
Available online at www.sciencedirect.com

112 (2008) 1730–1748
www.elsevier.com/locate/rse
Remote Sensing of Environment
Detecting land cover change at the Jornada Experimental Range, New
Mexico with ASTER emissivities

A.N. French a,⁎, T.J. Schmugge b, J.C. Ritchie c, A. Hsu c, F. Jacob d, K. Ogawa e

a U.S. Arid Land Agricultural Research Center, USDA/ARS, 21881 N. Cardon Lane, Maricopa, AZ 85238, USA
b Gerald Thomas Professor of Water Resources, College of Agriculture, New Mexico State University, Las Cruces, NM 88003, USA

c USDA/ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA
d Institute of Research for the Development, Laboratory for studies on Interactions between Soils-Agrosystems-Hydrosystems, UMR LISAH SupAgro/INRA/IRD,

Montpellier, France; formerly at Remote Sensing and Land Management Laboratory, Purpan Graduate School of Agriculture, Toulouse, France
e School of Engineering, University of Tokyo, Japan

Received 30 November 2006; received in revised form 28 August 2007; accepted 31 August 2007
Abstract

Multispectral thermal infrared remote sensing of surface emissivities can detect and monitor long term land vegetation cover changes over arid
regions. The technique is based on the link between spectral emissivities within the 8.5–9.5 μm interval and density of sparsely covered terrains.
The link exists regardless of plant color, which means that it is often possible to distinguish bare soils from senescent and non-green vegetation.
This capability is typically not feasible with vegetation indices. The method is demonstrated and verified using ASTER remote sensing
observations between 2001 and 2003 over the Jornada Experimental Range, a semi-arid site in southern New Mexico, USA. A compilation of 27
nearly cloud-free, multispectral thermal infrared scenes revealed spatially coherent patterns of spectral emissivities decreasing at rates on the order
of 3% per year with R2 values of ∼0.82. These patterns are interpreted as regions of decreased vegetation densities, a view supported by ground-
based leaf area index transect data. The multi-year trend revealed by ASTER's 90-m resolution data are independently confirmed by 1-km data
from Terra MODIS. Comparable NDVI images do not detect the long-term spatially coherent changes in vegetation. These results show that
multispectral thermal infrared data, used in conjunction with visible and near infrared data, could be particularly valuable for monitoring land
cover changes.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Monitoring the spatial and temporal changes in land cover
for semi-arid and arid land regions is required for hydrologists,
ecologists and agronomists. Land cover information is used by
hydrologists to update surface conditions affecting stream flow,
infiltration and evapotranspiration (Menenti et al., 2005; Su,
2000), by agronomists for acreage and yield prediction (Fang,
1998), and by ecologists for assessing the relationships between
land degradation, human activities, and global climate change
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(Chehbouni et al., 2000). The need for this monitoring is
especially important in dry regions, since many of these are
productive agricultural lands under pressure from extreme
drought and population increase (Falkenmark, 1997).

Land cover change has been documented for decades over
critical semi-arid regions, such as West Africa (Diouf and
Lambin, 2001), in the Mediterranean Basin (El Kharraz et al.,
2004), and for more than 100 years in southern New Mexico,
USA (Buffington and Herbel, 1965). In the latter instance,
observations have revealed large and deleterious changes where
rangeland previously dominated by grass has become dominat-
ed by mesquite and creosotebush (Gibbens et al., 2006; Havstad
et al., 2000).
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The significance of these long-term observations, though
previously recognized, has only begun to be fully appreciated by
the use of remotely sensed data spanningmultiple decades (Rango
et al., 2005). Using frequent synoptic remote sensing observations
of arid lands, especially if they were available at resolutions better
than 100m, would greatly improve our ability to monitor, analyze
and understand the implications of rapid land cover changes.

A common approach to monitoring land cover change
compatible with the objective of long term monitoring is to
collect well-calibrated vegetation index (VI) data [e.g., the
normalized difference vegetation index (NDVI) and its variants].
These observations are now routinely collected at daily to bi-
weekly temporal sampling and at spatial resolutions between 1 m
and 1 km from sensors such as Ikonos (Dial et al., 2003),
Advanced Spaceborne Thermal and Reflection radiometer
(ASTER) (Yamaguchi et al., 1998), Landsat (Goward et al.,
2001), the Vegetation instruments aboard Satellites Pour
l'Observation de la Terre (SPOT4 and SPOT5), and MOderate-
resolution Imaging Spectrometer (MODIS) (Justice and Town-
shend, 2002; Justice et al., 1998), each of which provides useful
estimates of living, green vegetation. The relationship between
vegetation indices and fractional cover and leaf area indices has
been widely investigated (e.g., Gutman and Ignatov, 1998;
Choudhury, 1987; Baret et al., 1995; Carlson and Ripley, 1997;
Jiang et al., 2006), meaning that accurate and reliable estimates of
green biomass are usually obtainable from remote sensing
platforms, provided ancillary data about observational conditions
and expected plant cover types are also available. Based on these
established relationships, time series of VI data have been used to
detect both seasonal and yearly land cover changes (Wardlow
et al., 2007; Telesca and Lasaponara, 2006; Anyamba and
Eastman, 1996; Justice et al., 1986; Byrne et al., 1980).

Although the vegetation index approach has demonstrated its
value for land cover change monitoring, it has a frequently
unmentioned shortcoming— during plant dormancy, VI values are
similar to and possibly indistinguishable from bare soils. Even for
indices specifically designed to minimize soil background effects,
such as the Modified Soil Adjusted Vegetation Index (MSAVI) (Qi
et al., 1994), the spectral inputs from red and near infrared
wavelengths do not readily distinguish soils from non-green
vegetation. In instances where the landscape is bare soil, the VI
maps are likely representative of true conditions. But for other
instances where the above-ground biomass remains during winter
months, and is senescent or inactive, the resultant VI maps are not
representative. For much of the year in arid lands, living plants are
non-green; and discriminating them from soil, using indices such as
NDVI, is difficult.When assessing vegetation cover changes over a
period of years, the difficulty is particularly significant because
within-season VI variabilities are just as large, or larger than,
interannual VI variabilities. The difficulty is exacerbated by an
inability to obtain frequent remote sensing images because of cloud
cover (e.g., from Landsat) or because the spatial resolution is too
coarse for areas of interest (e.g., from MODIS). Unless one can be
confident thatVI extremeswithin a plant growth cycle are captured,
postulated VI trends will be biased by insufficient temporal
sampling. Hence, use of VI methods to infer rates of land cover
change over sparsely vegetated landscapes can be misleading.
More recent work indicates VI can be improved by
incorporation of hyperspectral near infrared (NIR) data, such
as in the 2.2 μm region, where cellulose and lignin absorption
features appear (Bannari et al., 2006; Daughtry et al., 2005). In
these ongoing studies, good discrimination between soil and
vegetation appear possible using end-member analyses.

When evaluating land cover over months to years, an
alternative monitoring approach does exist and is based upon
spatial estimation of thermal infrared emissivities. Emissivity
(ϵλ), a measure of thermal radiation efficiency, is defined as the
ratio between actual emitted radiation (Lλ) and emitted radiation
from a blackbody (Lλ,BB) at the same temperature:

ϵE ¼ LE
LE;BB

ð1Þ

Emissivity is the proportionality factor that distinguishes
brightness temperatures from true radiometric temperatures
(Norman and Becker, 1995) and is important for modeling the
earth's surface energy balance. The energy balance at long
wavelengths also plays a role in the ability to observe land
surface emissivities:

Lsensor ¼ ϵLsurface þ 1� ϵð ÞLA ð2Þ

where thermal infrared radiation (TIR) observed by a sensor
(Lsensor) just above the surface is the weighted sum of band
surface emitted radiation (Lsurface) and band downwelling sky
radiation (L↓). Band-averaged emissivity (ϵ) and its comple-
ment are the weighting factors, which means that estimation of
surface emissivity is only possible when contrast exists between
(Lsurface) and (L↓). Emissivity is independent of temperature
itself and varies spectrally according to surface composition and
geometry. These latter properties make emissivity observations
potentially useful for land cover characterization. Measure-
ments at laboratory scales (Salisbury and D'Aria, 1992;
Elvidge, 1988), for example, show that emissivities of soil
and vegetation are commonly distinct and do not rely upon plant
chlorophyll content. This makes emissivity a potential tool for
discriminating soil and vegetation emissivities. At field scales,
soil and vegetation can still be distinguished (Humes et al.,
1994), as illustrated by observations of senescent vegetation
during a 1997 study over Oklahoma (French et al., 2000). In that
instance, emissivities at wavelengths between 8 and 9.5 μm
were close to 1.0 for vegetation, while those for soils were
∼0.91. Considering the capabilities of VI and emissivity data
together, a three-way characterization of land cover is possible
by distinguishing bare soils, green vegetation, and non-green
vegetation.

Since 2000 an important remote sensing capability became
available through the launch of the ASTER instrument in
December 1999 onboard the Terra satellite. ASTER uniquely
offers multispectral thermal infrared (TIR) remote sensing at
moderate resolution (90 m), data unavailable elsewhere. Using
ASTER's five thermal bands, land surface emissivities could be
estimated in ways similar to that used by French et al. (2000) for
the Oklahoma study, allowing more extensive evaluation of the
land cover discrimination approach.



1 The under-determination can also be resolved with multiple observations, as
is done in the day-night method (Watson, 1992). That method however is
highly sensitive to measurement errors, atmospheric correction errors, and co-
registration of images (Mushkin et al., 2005).
2 Available at: http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/

docs/-ASTER/atbd-ast-05-08.pdf.
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One such evaluation arose fortuitously from ongoing studies
of a semi-arid rangeland in southern New Mexico, USA, at a
research site utilizing remote sensing image data to monitor
landscape structural evolution and land surface-atmosphere
exchanges. The study site, known as the Jornada Experimental
Range (Jornada), has been the focus of local and regional
remote sensing studies since 1995. The primary theme of these
studies is assessment of rangeland health, including that of
vegetation land cover changes.

Vegetation cover changes at Jornada have been dramatic and
occur over a wide range of time scales. Using surveys from 1858,
Gibbens et al. (2006) document the transformation of the
rangeland from a productive grassland to a degraded landscape
dominated by shrubs in 1998. Over this 140 year span, grassland
decreased from 67–98% coverage to less than 1%. Recent
Jornada studies (e.g., Snyder and Tartowski, 2006) suggest too
that significant vegetation changes occur at much shorter time
spans, particularly at seasonal to annual scales where vegetation
patterns change in complex ways in response to highly variable
water availability.

The importance of Jornada for this study is that vegetation
cover changes in this area have occurred at observable time
scales and that related ground observations may be available to
help validate changes inferred from remotely sensed emissiv-
ities. Using ASTER data over 2001–2003, consisting of 27
nearly cloud-free scenes, emissivity trends can be analyzed and
compared with independently obtained observations.

Analysis and comparisons proceed in six main steps. First,
emissivity retrieval approaches from the multispectral thermal
infrared sensor ASTER are considered. Three different techniques
are described and implemented. This is done because consensus is
lacking for optimal temperature-emissivity separation and because
of concerns that inferred emissivity changes could be data
processing artifacts. Second, information about the Jornada setting
is discussed. In the third step, the significance of the emissivity
changes is considered. Here tests are employed to determine the
importance of interfering effects upon emissivity retrieval precision
and bias. In the fourth step, the study focus, emissivity changes
observed over Jornada are described, with particular attention paid
to anomalously large changes indicative of vegetation land cover
degradation. Fifth, an important related issue is addressed, namely
the relationship between vegetation cover and thermal emissivities.
Frequently emissivity data are estimated from VI's, an approach
that effectively questions the utility of emissivity observations.
Here the non-equivalence of remotely sensed VI's and emissivities
are shown. Sixth, the overall significance of the ASTER-Jornada
study is discussed and ASTER emissivity patterns are interpreted.

2. Remote sensing estimation of emissivity

A major benefit of multispectral thermal infrared remote
sensing is its ability to estimate land surface temperatures, spectral
emissivities, and broadband emissivities within the TIR window.
These properties are especially valuable when observed simulta-
neously because they help achieve land surface temperature (LST)
accuracies better than 1 °C and help distinguish between different
land surfaces according to soil, rock and vegetation cover
(Tonooka, 2001; Gillespie et al., 1998; Hook et al., 1992, 2001).
By contrast, spectral emissivity characterization is not feasiblewith
single-window TIR, nor with most dual-window TIR instruments.
Although it is true that multiple bands also cannot resolve the
under-determined TIR remote sensing problem (i.e., that for N
bands, there exist N+1 unknowns, namely N emissivities plus one
surface temperature), they do allow objective characterization of
the emissivity spectrum, an accomplishment otherwise infeasible.
This makes it possible to relate spectral variations to surface
composition and surface cover, as well as help improve
atmospheric corrections (Tonooka, 2001).

Various approaches to estimating emissivity from multi-band
TIR data exist, examples of which are discussed in Jiménez-Muñoz
et al. (2006), Jacob et al. (in press), Dash et al. (2002), and Li et al.
(1999). Analyses considered in this study were the Temperature-
Emissivity Separation (TES, Gillespie et al., 1998) approach, the
Temperature-Independent Spectral Indices (TISI, Becker and Li,
1990) approach, and the Normalized Emissivity Method (NEM,
Gillespie, 1985; Kahle and Alley, 1992; Kahle et al., 1980)
approach. For reasons discussed below, the primary approach used
for the Jornada study was NEM.However, TES and TISI were also
employed to demonstrate that results from the land cover change
assessment were not contingent upon the choice of algorithm.

One of the better-known temperature and emissivity algorithms
for ASTER images is TES, a procedure that resolves the under-
determinacy1 by employing an empirical functional relationship
between emissivity spectral contrast and minimum emissivity
(Matsunaga, 1994). With TES the minimum emissivity (ϵmin) of a
sample can be closely approximated by estimating the range of
either absolute or relative emissivities (Δϵ) via the formula:

ϵmin ¼ b0 þ b1Dϵb2 ð3Þ
where parameters b0, b1, and b2 are derived from laboratory
measurements of emissivities. For standard ASTER data products,
the parameters are based on over 200 laboratory samples. For this
study, the parameters used were 0.994, −0.687, and 0.737,
respectively. By iteratively combining Eq. (3) with atmospheri-
cally corrected surface emitted radiance for each thermal band, the
radiometric surface temperature can be separated from emissivities
for each TIR band.

Based on simulation studies, Gillespie et al. (1998) show that
accuracies of ±1.5 °C and ±0.015 in emissivities are possible
with TES. Recent experience with ASTER and TES generally
confirms this assessment, particularly for geological applica-
tions, where emissivity contrasts are large (Tonooka, 2001;
Rowan et al., 2005; Rowan and Mars, 2003; Hook et al., 2005).

Due to the method's complexity, readers interested in TES
implementation details should consult Gillespie et al. (1998)
and the ASTER Theoretical Basis Document for the standard
data product AST05.2

http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/-ASTER/atbd-ast-05-08.pdf
http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/-ASTER/atbd-ast-05-08.pdf


Table 1
Power function parameters for ASTER TIR bands according to: L=αTn, with
spectral radiance L (mWm−2sr−1 μm−1) and temperature (K)

Band λ̄ α n

10 8.2819 1.782−10 5.539
11 8.6313 6.211−10 5.323
12 9.0757 2.660−9 5.074
13 10.650 1.537−7 4.360
14 11.2812 5.462−7 4.132

λ̄ is the band's central wavelength (μm).
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For agricultural applications the TES procedure is less
satisfactory because the land surfaces are dominated by high
emissivities. In these cases, TES's differencing approach tends
to underestimate emissivities and consequently overestimate
land surface temperatures, particularly over gray body targets
such as vegetation (Jacob et al., 2004). Potential emissivity
errors can exceed 2.0%, resulting in errors of 2–3 °C. This
outcome is a consequence of the method's inability to
distinguish between true and apparent spectral contrast, where
the latter can be due to signal noise or inaccurate atmospheric
compensation. Improving temperature and emissivity retrievals
for studies therefore requires alternatives to ensure that high
emissivity targets remain so after the temperature-emissivity
separation.
Fig. 1. Jornada regional overview of emissivities in the 8.5–8.8 μm TIR window. The
and MODIS band 29 emissivities to the right. Axes are annotated with UTM zone 1
triangle and circle indicate sites denoted as ‘Degraded’ and ‘Reference’, respectively.
lower emissivities (b0.9) and is characterized by sandy soils, while agricultural lands
Sands region has even lower emissivities (∼0.8) because of its gypsum-covered sur
One way to achieve such a result is to utilize the normalized
emissivity method (NEM, Gillespie, 1985; Kahle and Alley,
1992), an initialization procedure for TES. NEM is straightfor-
ward: a maximum spectral emissivity ϵmax appropriate for the
scene (0.98 is used for this Jornada study) is specified for
whichever band has themaximum surface brightness temperature.
Commonly this maximum temperature appears in bands sampling
wavelengths between 10 and 13 μm. Once identified, the radio-
metric surface temperature at that band is computed, then applied
to the remaining TIR bands to extract spectral emissivities.

The NEM approach of pre-specifying ϵmax is not an arbitrary
one and requires some judgment based on landscape context and
targets of interest (Kahle and Alley, 1992). Pre-specification has a
direct effect upon emissivity retrieval, where consistent selection
of ϵmax allows meaningful relative comparisons of emissivities
between different scenes, but may cause substantial differences
with respect to other temperature-emissivity separation techni-
ques. Since ϵmax is close to 1.0, sensitivity to its pre-specification
is small when accounting for downwelling sky radiation [last term
in Eq. (2)]. Nerry et al. (1998) show that the impact of assuming
an initial emissivity while computing a downwelling radiation
correction term was small,≤0.14%. Dash et al. (2005) found yet
smaller uncertainties. For combined soil and vegetated terrain,
band averaged maximum emissivities are commonly within
1.5% of 0.98. Considering soil emissivity spectra from the Johns
display is a composite of ASTER band 11 emissivities to the left of the bold line
3 coordinates in kilometers. Red squares indicate LAI transect sites. The open
The region has strong emissivity differences, where the Jornada is dominated by
in the Las Cruces area are dominated by higher emissivities (N0.95). The White
face.



Table 2
Selected ASTER/MODIS overpass dates

Count Day Month Year DOY Cumulative Days
(since 1/1/2001)

Δ Days

1 12 Feb 2001 43 42 –
2 12 May 2001 132 131 89
3 22 Jul 2001 203 202 71
4 17 Sep 2001 260 259 57
5 19 Oct 2001 292 291 32
6 11 Nov 2001 315 314 23
7 20 Nov 2001 324 323 9
8 23 Jan 2002 23 387 64
9 8 Feb 2002 39 403 16
10 24 Feb 2002 55 419 16
11 3 Mar 2002 62 426 7
12 15 May 2002 135 499 73
13 31 May 2002 151 515 16
14 23 Jun 2002 174 538 23
15 10 Aug 2002 222 586 48
16 26 Aug 2002 238 602 16
17 4 Sep 2002 247 611 9
18 20 Sep 2002 263 627 16
19 7 Nov 2002 311 675 48
20 23 Nov 2002 327 691 16
21 10 Jan 2003 10 739 48
22 11 Feb 2003 42 771 32
23 31 Mar 2003 90 819 48
24 18 May 2003 138 867 48
25 10 Jun 2003 161 890 23
26 7 Sep 2003 250 979 89
27 16 Oct 2003 289 1018 39
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Hopkins collection within the ASTER spectral library (Salisbury
and D'Aria, 1992; Jet Propulsion Laboratory, 2001), 39 of 41
samples (95%) had ϵmaxN=0.965 somewhere in the TIR window.
For this library set, 38 of the 41 had the maximum emissivity
located in either ASTER band 13 or 14 (10.25–11.65 μm), while
3 were associated with the shorter wavelength ASTER band 10
(8.125–8.475 μm). No maximum values were found in ASTER
bands 11 or 12 (respectively, 8.475–8.825 and 8.925–9.275 μm).
At more typical remote sensing scales (e.g., 90 m for ASTER),
vegetation is viewed as a canopy rather than as individual leaves
and multi-scattering effects would increase maximum emissivi-
ties to over 0.99 and reduce the variability of maximum
emissivities (Fuchs and Tanner, 1966, 1968; Sutherland and
Bartholic, 1977; Norman et al., 1995; Palluconi et al., 1990;
Zhang and Smith, 1990).

Another method that can overcome the low ϵmax problem is
TISI (Becker and Li, 1990), a technique that computes relative
emissivities (TISIi,j) from power-scaled brightness tempera-
tures:

TISIi;j ¼ Ti
Tj

� �ni
ð4Þ

where Ti and Tj are atmospherically corrected brightness
temperatures for spectral channels i and j. The exponent ni
can be determined from a least squares analysis:

LifaiT
ni
i ð5Þ

where channel spectral radiance is Li (mWm−2sr−1 μm−1) and
radiometric temperature for a channel is Ti (K).

Table 1 lists the best-fit terms for Eq. (5), considering
ASTER channels 10–14. TISI values are nearly independent of
land surface temperature, which means that their uncertainties
can potentially be low, given accurate atmospheric corrections.
However, TISI values are non-unique, dependent upon the
chosen bands, and indicate emissivity ratios, as discussed by
Becker and Li (1990). To retrieve emissivities themselves,
further observations or additional assumptions are needed. In
the former case, nighttime shortwave infrared data are suitable
(Petitcolin and Vermote, 2002), but in this study, such data at
90 m spatial scales are not available. In the latter case, a
reference channel emissivity can be used in the same way as for
the NEM approach.

In summary, remote sensing estimation of emissivity at
Jornada can be achieved in several ways, three of which are
considered here. None can be accomplished in the current
context without underlying assumptions. These include
assumptions about spectral emissivity contrast and the existence
of an accurate emissivity reference channel.

3. The Jornada experiment

The Jornada Experimental Range (Jornada) research area is a
semi-arid rangeland in southern New Mexico, 30 km northeast
of the city of Las Cruces and 40 kmwest ofWhite Sands (Fig. 1).
The core study sites are within the Jornada Experimental Range,
a USDepartment of Agriculture research site since 1912 to study
effective management of grazingland. Jornada is also a Long
Term Ecological Research (LTER) site (http://jornada-www.
nmsu.edu), a collaborative research program established by
the National Science Foundation in 1980 to support research on
long-term ecological phenomena in the United States (http://
lternet.edu/). South of Jornada is the New Mexico State Univer-
sity Ranch, also known as the Chihuahuan Desert Rangeland
Research Center (CDDRC, http://spectre.nmsu.edu/dept/wel-
come.html?t=cdrr). Typical vegetation at Jornada includes
grass and shrub areas. The principal grasses include black
grama [Bouteloua eriopoda (Torr.) Torr.], mesa dropseed
[Sporobolus flexuosus (Thurb. Ex Vasey) Rydb.], and three
awn [Aristida purpurea Nutt. and Aristida pansa Wooton and
Standl.]. Shrubs and suffrutescents are commonly C3 plants
and include honey mesquite [Prosopsis glandulosa Torr.],
fourwing saltbush [Atriplex canescens (Pursh) Nutt.], broom
snakeweed [Gutierrezia sarothrae (Pursh)Britton andRusby], and
soaptree yucca [Yucca elata (Engelm.)].

Jornada ground sites were selected to represent grass, grass–
shrub ecotone (transition), and shrub (mesquite) ecosystems. The
transition site has vegetation components of both the grass and
shrub sites. Dunes are developing at the transition site but are
usually less than 1m in height. Honey mesquite on coppice dunes
dominates the shrub site. Bare soil with almost no vegetation
dominates the areas between these coppice dunes. The sites will
be referred to as Grass (32.5981° N, 106.8471° W), Transition
(32.6068° N, 106.8695° W) and Mesquite (32.6507° N,
106.8695° W) in this paper. As previously noted, rangeland at
Jornada and throughout the US Southwest has degraded

http://jornada-www.nmsu.edu
http://jornada-www.nmsu.edu
http://lternet.edu/
http://lternet.edu/
http://spectre.nmsu.edu/dept/welcome.html?t=cdrr
http://spectre.nmsu.edu/dept/welcome.html?t=cdrr


Fig. 2. Thermal band response functions for MODIS and ASTER. MODIS
bands (dotted) are B29, B31, and B32, respectively left to right. ASTER bands
(solid, with bold B11) are B10, B11, B12, B13, and B14. Note that MODIS B29
response is similar to ASTER B11. MODIS B31 and B32 do not have similar
matches with ASTER bands B13 and B14. The dashed curve illustrates an
example soil emissivity spectrum from Jornada, showing lower emissivities
within the 8–9.5 μm interval.

Table 3
Field, laboratory, and ASTER band 11 emissivities at the Grass, Transition,
Mesquite and White Sands sites

Site Source B11 Emissivity

Grass Cimel 0.893
Lab 0.882
ASTER 0.886

Transition Cimel 0.800
Lab 0.803
ASTER 0.872

Mesquite Cimel 0.718
(Bright Sand) Lab 0.703

ASTER –
Mesquite Cimel 0.847
(Dark Sand) Lab 0.880

ASTER 0.853
White Sands Cimel 0.740
(Gypsum) Lab 0.724

ASTER 0.725

Two soil sample types were acquired at Mesquite. Data sources were in situ
Cimel-312T radiometric observations and bagged surface samples for laboratory
spectrophotometry.
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substantially, with significant gains in mesquite/coppice dune
populations at the expense of beneficial grassland.

Since 1995, semi-annual remote sensing experiments using a
range of aircraft and satellite detectors have been conducted at
Jornada (JORNEX) to monitor land cover changes, assess
landform distributions and estimate water vapor and energy
fluxes prior to and following seasonal monsoonal rainfall
between June and September (Havstad et al., 2000). With the
successful launch of NASA's EOS Terra satellite in December
1999, the experiments have been enhanced by dedicated
observations with the ASTER sensor.

From 47 scene acquisitions, 27 mostly cloud-free images
acquired between February 2001 and October 2003 were
selected for processing (Table 2). To ensure the best possible
analyses, all visible/near-infrared (VNIR) images were geor-
egistered to within 15m accuracies and thermal infrared (TIR)
images to within 90m accuracies using common ground control
points. Estimates of spectral emissivities were done by
procedures previously described in Section 2, with primary
emphasis upon the NEM approach.

Since the objective of this study was to investigate the ability
of emissivities to detect land cover change, analysis focused on
shorter TIR wavelengths where most of the emissivity
variability in soils occurs (Fig. 2). At wavelengths 10.5–
12 μm, emissivity variability is small for most land cover
conditions, whereas for 8–10 μm interval variations potentially
range from less than 0.8 to 0.98. Not all soils exhibit this high
spectral variability. Examples of low spectral variability include
fine-grained, moist, and quartz-poor soils. In these circum-
stances, distinction between bare soils and soils covered with
vegetation could be difficult. At Jornada soil emissivity
variability is high, as exemplified by the dashed line in Fig. 2.
Three ASTER bands sample the high-variability interval: 10,
11, and 12. Band 11 (8.475–8.825 μm) was used for this study
because it is less sensitive to atmospheric correction uncertain-
ties than Band 10 (8.125–8.475 μm) and because it did not have
the anomalous gain changes of Band 12 (8.925–9.275 μm)
discussed by Tonooka et al. (2003, 2005). Furthermore, Band 11
is nearly identical to MODIS band 29 (8.4–8.7 μm), allowing
spectral comparisons with this coarser resolution sensor.

To ensure the best possible TIR retrievals, ASTER thermal
data were calibrated using both reference radiometric database
coefficients and temporally based interpolation coefficients
needed to account for detector gain changes between routine
updates. These interpolated values were particularly important
for calibration of ASTER band 12.

To estimate vegetative cover, both remote sensing and
ground measurements were used. For the remote sensing data,
NDVI values were derived from ASTER bands 2 and 3N
reflectances previously aggregated to 90 m. The reflectances
were inferred from at-sensor radiances by using the 6S
atmospheric radiative transfer model (Vermote et al., 1997)
and NOAA radiosonde profile data (http://raob.fsl.noaa.gov)
from Santa Teresa, NM (EPZ, 31.90° N, 106.70° W, ∼75 km
south of Jornada). For the ground measurements, the three sites
previously mentioned (Grass, Transition, Mesquite) were used
for semi-annual leaf area index (LAI) transect data. Each
transect was 150 m long with LICOR LAI-2000 measurements
collected at 1-meter intervals for three 30-m sections through
vegetation including grass and shrubs. The measurements
approximate total canopy cover, whether green or not.

To help verify ASTER emissivities at Jornada, ground
collections of multiband TIR radiometric data from four sites
were used (Table 3). In situ samples were acquired with a
tripod-mounted 5 band CIMEL-312T instrument, while loosely-
bagged soil samples were measured (hemispheric reflectance)
in the laboratory using a Beckman spectrophotometer at the Jet
Propulsion Laboratory, Pasadena, California (http://speclib.jpl.
nasa.gov). Four of the resulting emissivity spectra were
collected at the transect sites (1 at the Grass site, 1 at the
Transition site, and 2 at the Mesquite site) and corresponded to
quartz-bearing soils with low emissivities between 8 and 12 μm.
The fifth spectrum corresponded to gypsum from the western

http://raob.fsl.noaa.gov
http://speclib.jpl.nasa.gov
http://speclib.jpl.nasa.gov


Fig. 3. Atmospheric columnar water vapor for the 2001–2003 period measured
by the EPZ radiosonde. The peaks correspond to monsoonal conditions. Day to
day variability, typically less than 1.0 cm, was used to estimate the uncertainties
of associated atmospheric properties used for thermal infrared correction.
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edge of White Sands (32.8222°N, 106.4125°W). In contrast to
quartz-rich soils, gypsum has generally high emissivities
(N0.96) except for 8.5–8.9 μm wavelengths, where it is
strongly reflective (ϵ∼0.72–0.74). Agreement between field,
laboratory, and ASTER data are generally very good.
Emissivity differences were less than 0.016 in most instances.
Exceptions occurred where samples could not be collected
intact (surface crusts at Mesquite) and where ASTER could not
resolve spatial heterogeneities (at Transition).

4. Emissivity retrieval uncertainty

Although accurate retrieval of land surface emissivities is
important, a greater concern for land cover change assessment is
consistent emissivity retrieval, since it is the temporal change of
emissivity that will determine the effectiveness of the analysis.
When considering interfering factors for change assessment,
four are critical: instrumental noise, georegistration errors,
anomalously wet soils, and inaccurate atmospheric corrections.
Fortunately, most of these errors for the Jornada study were
small and unimportant. In particular, instrumental errors in the
TIR bands were b0.4 °C (Tonooka et al., 2005). Georegistration
errors were also small, b90 m, because all scenes were
registered with ground control points. Considering the variabil-
ity scale of vegetation at Jornada ranges between 3 and 8 m
Pelgrum (2000), in conjunction with a 90 m pixel size, apparent
temporal changes in emissivities due to mis-registrations were
not significant. Wet soils too were rarely a problem because
rainfall shortly before selected overpasses did not occur. The
Table 4
Coefficients to estimate ASTER TIR atmospheric correction parameters based on co

Band τ L↑

i b0 b1 p b0

10 −0.08447 −0.1859 0.7935 273.4
11 −0.07470 −0.1180 0.8247 258.4
12 −0.06872 −0.0722 0.9783 244.6
13 −0.03421 −0.0590 1.3600 172.9
14 −0.02422 −0.0780 1.3178 100.9
one exception occurred in September 2002 when rainfall was
heavy shortly before overpass time. The effect of this event is
discussed further in Section 5.

Since three of four critical interfering factors were not
significant concerns for the Jornada study, the greatest concern
for change analyses was ensuring adequate removal of
atmospheric effects. Inaccurate corrections could overwhelm
small emissivity changes and invalidate results. Thus, quanti-
fying the potential effects of atmospheric correction uncertainty
became important, especially when using atmospheric profiles
that were not acquired at overpass times, nor co-located over
Jornada.

To assess correction uncertainties, a sensitivity analysis of
atmospheric profile correction was conducted using simula-
tions. By assuming temporal variability equivalence between
the profile over the radiosonde site and profiles above Jornada,
and by developing relationships between the correction terms
and columnar water vapor (the dominant factor affecting TIR
corrections), the expected effect of uncertain TIR corrections
upon emissivity could be estimated.

The tests were performed in four steps. The first step
quantified variability of columnar water vapor over the Santa
Teresa radiosonde site (EPZ) by considering the atmospheric
database from 2001 to 2003. The second step established
empirical relationships between columnar water vapor and
atmospheric correction terms for each of the five ASTER TIR
bands. This was done by performing simulations using
MODTRAN radiative transfer code and a subset of the EPZ
database. The third step generated apparent emissivities using
the relationships from step 2 and the variability data obtained
from step 1. Specifically, MODTRAN simulations were
performed and applied to the NEM algorithm for each of the
27 ASTER scenes using radiosonde profiles and normally
distributed perturbations to the correction terms. The fourth step
extracted the statistical outcomes for ASTER band 11
emissivities from each site of interest.

In step one, columnar water vapor for 2159 EPZ radiosonde
profiles was computed and plotted by time (Fig. 3). Water vapor
amounts ranged ∼0.2–3.4 cm with strong seasonal increases
associated with summer monsoons. Day-to-day water vapor
also varied seasonally, ranging ∼25–45% of columnar water
amounts. To include a wide range of realistic simulated
atmospheric conditions throughout the year, the upper limit
value (45%) was used for subsequent simulations.

In step two, MODTRAN runs were performed using a subset
(359) of the 2001–2003 atmospheric profile database. Outputs
were filtered with ASTER TIR spectral response functions,
lumnar water vapor

L↓

b1 p b0 b1 p

1117.4 0.7420 355.2 1992.2 0.7218
788.8 0.7943 428.7 1325.6 0.8116
557.2 0.9144 433.6 908.9 0.9439
466.5 1.2782 294.2 780.4 1.2551
575.2 1.2378 172.4 946.9 1.2192



Fig. 4. Atmospheric correction terms for ASTER band 11 based on EPZ
radiosonde data and MODTRAN simulations. A six-month sample of
radiosonde profiles from 2001 were modeled and filtered to obtain ASTER
transmissivities (top), upwelling spectral radiance (middle), and hemispherically
integrated downwelling spectral radiance (bottom). Lines are empirical fits used
in simulations to convert between columnar water vapor and correction terms.

Fig. 5. Emissivity estimation uncertainty over Jornada due to atmospheric corrections
site (a), and the nearby ‘Reference’ site (b). Based on columnar water variability obse
correction relationships for the ASTER thermal bands (Fig. 4), an expected range of
simulation outcomes showed that the 3-year emissivity decrease at the ‘Degraded’ site
42% of columnar water vapor.
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modeled with power functions, and checked against the
remainder of the database. The estimation functions were:

si ¼ b0i þ exp b1iw
pi½ � ð6Þ

for atmospheric transmissivity, and:

Li ¼ b0i þ b1iw
pi ð7Þ

for path radiance (upwelling and downwelling). The terms b0i,
b1i, and pi correspond to the parameters in Table 4. w is
columnar water vapor (cm). Eqs. (6) and (7) are valid for
columnar water vapor amounts between 0.25cm and 2.5cm.

Graphical examples of these functions compared with
MODTRAN output values are shown in Fig. 4 for ASTER
band 11.

In step three, 1001 MODTRAN simulations were run using
randomly generated, Gaussian distributed, τ (transmissivity),
L↑ (upwelling path radiance), and L↓ (hemispherically
integrated downwelling radiance) correction terms for each of
the 27 ASTER scenes. The chosen number of simulations was
based on a compromise between the need for large sample sizes
and time needed for computations. Distribution plots from test
runs indicated 101 simulations were insufficient, whereas
output from 10001 runs were only marginally different from
1001 runs (odd numbers were used to simplify median
sampling). Atmospheric corrections were done according to
the atmospheric radiative transfer equation:

Lsurface;i ¼ Lsensor;i � Lzi

si
� 1� ϵið ÞLAi ð8Þ

where Lsurface,i is radiance emitted by the surface for channel i
and Lsensor,i is radiance observed by the sensor. For each scene,
the closest-in-time radiosonde profile was used to derive the
mean value of each of the atmospheric correction terms in
Eq. (8). Apparent instead of observed columnar water vapor
. The significance of temporal change was assessed for two sites: the ‘Degraded’
rved with EPZ radiosondes (Fig. 3), along with empirically-derived atmospheric
Band 11 emissivities was computed from 1001 random samples per pixel. The
was unaffected by modeling, with atmospheric profiles deviating by as much as



Fig. 6. Linear trend of ASTER band 11 emissivity decrease over Jornada study sites between February 2001 and October 2003. Scale is percent emissivity change per
year. The most significant changes occur west and southwest of the Jornada Experimental Range boundary (indicated by the stair-step line). The three box symbols
(north to south) indicate Mesquite, Transition, and Grass study sites. Northwest–southeast stripes, also seen in Fig. 7, are detector scan artifacts.
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values for each term were then computed using the inverse of
Eqs. (6) and (7). This approach accounts for differences
between predicted and observed atmospheric transmissivities
and path radiances. Using the columnar water variability
estimated in step 1 as the standard error of mean water vapor,
random values of apparent water vapor were generated to allow
forward solutions of Eq. (6). Having simulated the atmospheric
correction terms τ, L↑, and L↓, surface emissivities could be
estimated from the NEM algorithm.

Lastly, in step four ASTER band 11 estimates for each pixel
(1.05E9 of these) were consolidated for statistical analysis.
Aggregation by target site resulted in data such as shown in
Fig. 5, where ASTER band 11 emissivity quantiles are plotted
for two sites spanning 2001–2003. Fig. 5 illustrates outcomes
for two sites denoted as ‘Degraded’ and ‘Reference’. These sites
did not have ground observations and were selected for
comparative purposes. The ‘Degraded’ site is the location of
apparent land cover degradation and will be further discussed
below. The ‘Reference’ site was chosen because it had no
significant land cover change, as seen from remote sensing data.
The site coincides with a fenced pasture having restricted
access. In Fig. 5a, the temporal progression of ASTER band 11
emissivities are displayed for the ‘Degraded’ site. Fig. 5b
displays the temporal progression for the nearby ‘Reference’
site, where emissivities showed less change. The symbols are
conventional box and whisker displays of quantiles (1st
quartile, median, 3rd quartile), except for the whiskers, which
represent the full emissivity range. All 27 selected overpass
times could be used for the ‘Reference’ site, but two fewer were
used for the ‘Degraded’ site due to limited ASTER coverage for
overpasses on 8 February and 7 November 2002. To estimate
emissivity uncertainties caused by random errors in atmospheric
corrections, linear trend lines were fit to data in each site. De-
trending data for the ‘Reference’ site was statistically
insignificant (R2 =0.008, pb2.2E−16). Residual error for the
‘Degraded’ site was 0.014, and for the ‘Reference’ site was
0.016, meaning that random atmospheric perturbations to
NEM-derived Band 11 emissivities were ≤1.6%.

5. Observed temporal changes

Temporal change in land cover between 2001 and 2003 over
Jornada was assessed in two ways: one in terms of change in land
surface emissivities, and another in terms of change in NDVI.
Although seasonal variations were likely embedded within the
data series, only 3-year linear trends were considered because this
was the simplest and least error-prone analysis possible.Modeling
variations at higher orders would have placed greater demands on
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accurate temporal sampling and would not allow suppression of
erroneous short term (weekly to monthly) changes.

5.1. ASTER band 11 emissivity change

Considering the georegistered stack of 27 ASTER images,
linear fits were computed for each pixel location by regressing
band 11 emissivities against cumulative days since 1 January
2001. The resulting emissivity slope values (Fig. 6) ranged
between −3% year−1 to +1% year−1. For most of the Jornada
region band 11 emissivity trends were small (b1%), suggesting
no significant linear change in emissivity patterns occurred for
this three year period. However, Fig. 6 also revealed spatially
coherent regions – one of them ∼5 km×10 km – near the
southern and western boundaries of the USDA Jornada Range,
where emissivities decreased by 2–3% year−1. These decreases
were greater than the 1.6% residual uncertainty estimated from
the atmospheric simulation tests. A portion of this emissivity
decrease region is delimited by the large black circle (repeated
in Figs. 7 and 10). By comparison, a trapezoidal-shaped area
(surrounding the small black circle indicating the ‘Reference’
site) showed negligible emissivity change. The explained
variations of these emissivity changes are indicated in Fig. 7,
which shows that the estimated linear trends have R2 values up
to 0.85 within the larger circled area. The trends were highly
Fig. 7. Coefficient of determination (R2) for linear trend of
significant, with p values b2E10−16. The extents of both the
trend and the R2 values, furthermore, were strongly correlated
to land use patterns. Note for example the abrupt spatial
termination of decreased emissivities along a roadway to the
west and along rangeland boundaries to the north. These
terminations could not have been caused by instrumental,
processing, or atmospheric correction errors, meaning that the
observed decreased emissivities were not data artifacts but were
indicative of physical land cover changes corresponding to
rangeland management practices.

These emissivity changes are consistent with retrieval
algorithms other than NEM. To show this, the previously
discussed ‘Degraded’ and ‘Reference’ sites were selected.
Comparison of trends (Fig. 8) obtained from three different
emissivity retrieval algorithms– NEM, TES, and TISI– showed
similar linear trends for both sites. Shown in black are
emissivities for the ‘Degraded’ site, and shown in gray are
emissivities for the ‘Reference’ site. Absolute emissivity values
from NEM, TES, and TISI significantly differed, despite use of
identical remote sensing data and initial emissivities. However,
the trend line slopes were similar, −2.09 to −2.70% year−1,
with R2 values ranging 0.60 to 0.66 (Table 5). Slopes for the
NEM and TISI emissivity trends were statistically identical and
only slightly different from the TES trend. Standard errors for
methods were also similar (∼0.04% year−1).
ASTER band 11 emissivity over Jornada study sites.



Fig. 8. Temporal emissivity trends over the ‘Degraded’ site (black) and the
‘Reference’ site (gray). Three different methods were used to estimate ASTER
emissivities: NEM (a), TES (b), and TISI (c). All three methods show significant
emissivity change for the 2001–2003 interval for the main site and no significant
change for the reference site.

Table 5
Emissivity trend estimation over the ‘Degraded’ site with NEM, TES, and TISI

Method Slope (%/year) Standard Error (%/year) R2
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The significance of the coherent regions can also be tested by
comparison against regions with no land cover change. One
such region is White Sands, a ∼20 km×25 km area covered by
generally dry, unvegetated gypsum sand. Gypsum is an
especially good stability test for ASTER band 11 due to its
large potential sensitivity, ranging between 0.72 for a dry
surface and 0.98 for a wet surface. Selecting a 12×20 pixel
patch well within the White Sands area (1080 m×1800 m,
32.8348 N, 106.2925 W)3 showed no significant emissivity
change occurred over the 2001–2003 period (Fig. 9). Linear
trend analysis for 9 scenes returned a slope of 0.3% year−1, with
R2 =0.02 and p value of 9.5E−15.

5.2. MODIS band 29 emissivity change

The spatially coherent decreasing emissivity zones identified
by ASTER are sufficiently large to compare with 1-km Terra
MODIS observations. If sensors such as MODIS corroborate
ASTER-based results, there will be not only the possibility of
3 ASTER resolution did not allow selecting the same site (Table 3) as used
previously for ground samples because of mixed-pixel problems.
greatly expanded regional studies at 1 km resolution but also
much more confidence that the changes are real and not
instrumentation artifacts. MODIS has only three TIR bands
comparable to ASTER's five (Fig. 2) but can still be analyzed
with the NEM, TES or TISI approaches. For compatibility, the
NEM approach was used for MODIS. The spectral band
equivalent to ASTER band 11 is MODIS band 29 (Fig. 2), with
the MODIS response weighted for slightly shorter wavelengths
relative to ASTER band 11.

MODIS band 29 emissivity changes were estimated using
the same 27 overpass days identified in Table 2. The resulting
patterns (Fig. 10) are remarkable for their similarity to changes
observed by ASTER (Fig. 6). Despite the coarser spatial
resolution, band 29 emissivities from MODIS show the same
3% year−1 decrease within the ‘Degraded’ site (larger circle).
Just as for the ASTER-based estimation, the MODIS emissivity
trend within the ‘Reference’ site (smaller circle) showed no
significant change over the 2001–2003 period. Five km
eastward of the main region with decreasing emissivities lies
a smaller region (with light gray tones) where emissivities
increased by 1%. The same patch of increasing emissivity was
observed by ASTER (Fig. 6).

5.3. ASTER NDVI change

Viewing Jornada from an NDVI perspective showed similar
but less significant temporal changes than seen with emissivity
(Fig. 11). Shown are trends for five sites: the ‘Degraded’ site,
the ‘Reference’ site, and the three transect sites, Grass,
Transition, and Mesquite. Plotted are NDVI quantiles for each
site by elapsed days since 1 January 2001. The trendlines are
least squares fits to the NDVI data over each site. The gray
boxes approximate the extent of the monsoonal season, the most
likely period for rainfall.

Visual inspection of trends suggested that NDVI decreased
over time in the same way as it did for emissivity, including a
weak suggestion of seasonally periodic changes. However,
NDVI values at Jornada were usually low – ranging between
0.0 and 0.2 – and there was no apparent distinction in
vegetation changes between the ‘Degraded’ and ‘Reference’
sites. Statistical analyses confirmed this observation. Unlike
emissivity trends (Table 5), the NDVI linear trends were not
significant (Table 6), with p values b2.2E−16. Considering
standard errors, NDVI slopes for all five sites were indistin-
guishable. R2 values were all negligible, meaning that NDVI
changes over the three years could not be explained by linear
trends.

To the extent that NDVI observations were correlative to
vegetation cover, these results can be qualitatively checked by
NEM −2.09 0.036 0.63
TES −2.70 0.043 0.66
TISI −2.09 0.039 0.60



Fig. 9. ASTER Band 11 emissivity trend at White Sands, 2001–2003. A sample of 240 pixels from within the White Sands area (32.8348° N, 106.2925° W), showed
no significant emissivity change over the three years, an outcome consistent with a bare, dry gypsum surface. Emissivities for Band 11 were retrieved within 1.1%
uncertainty (residual error).
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comparison against LAI transects collected at the Grass,
Transition and Mesquite sites. The transects were important
independent observations of vegetation cover, but unfortunately
because of their locations and sampling frequencies, they could
not be used in a rigorous way to confirm vegetation conditions
in the ‘Degraded’ region. Fig. 12 summarizes the ground
observations for 2001–2003. The 3-monthly rainfall bars at the
base of the plot show that cumulative rainfall did not correspond
to monsoon periods.

Generally, LAI values suggest a three-year decrease from
1.36 to 0.54–0.76 for the Grass and Transition sites. LAI values
at the Mesquite site vary widely between 1.89 to 0.37, making
Fig. 10. Linear trend of MODIS band 29 emissivity over Jornada study sites between 2
spatially coherent regions of decreasing emissivity west and south of Jornada.
trend assessment difficult. Site trends inferred by line segments
are suggestive of decreasing LAI values at the Grass and
Transition sites from May 2001 (Cumulative day 131) until
October 2002 (Cumulative day 640). Causes for the anoma-
lously low LAI data in September 2001 (Cumulative day 259)
are unknown. These data were collected after unusually heavy
rainfall and ponded water. With one exception for the Mesquite
site, LAI values remained low (b0.68) from October 2002 until
October 2003.

Explanation for the relatively poor discrimination ability of
NDVI data may be provided by comparison against LAI
transect data (Fig. 13). Plotted in the top figure are LAI vs.
001 and 2003. Gray scale is the same as used in Fig. 6. MODIS data confirm the



Fig. 11. NDVI temporal trends over five selected Jornada sites: the ‘Degraded’ site (a), the ‘Reference’ site (b), and the three LAI transect sites: Grass (c), Transition
(d), and Mesquite (e). Shaded regions correspond to the monsoonal events evident in EPZ radiosonde profiles (Fig. 3).

Table 6
NDVI change statistics for five Jornada sites. Slope and standard error of slope
shown as NDVI % year−1

Site Slope Standard Error Residual (%) R2

Degraded –2.3 0.2 6.1 0.06
Reference –2.3 0.2 5.8 0.07
Grass –2.5 0.2 6.0 0.08
Transition –2.3 0.2 6.0 0.07
Mesquite –2.6 0.2 6.1 0.08
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ASTER band 11 emissivities, and plotted in the bottom figure
are LAI vs. NDVI. For conditions ranging between bare soil and
full cover, a linear-exponential relationship between LAI,
emissivity, and NDVI could be expected, where asymptotes
were reached for LAI values greater than ∼3.0. For Jornada
land cover conditions linear fits (indicated as solid lines) were
sufficient because LAI values were less than 2.0. Six LAI
transect observations were made, but one set made on 17
September 2001 was excluded (open symbols) because of very
wet surface conditions. Such conditions affected all sites by
increasing emissivities.

The relationship between LAI and NDVI agrees with the
previous time series (Fig. 11) that showed trends with little
distinction between sites. Statistical results (Table 7) show
moderate to good explained variance (0.50–0.81). LAI/NDVI
slope relationships were similar and agreed within standard
errors.



Fig. 12. Temporal LAI change at Jornada using 150 m ground transect data from 2001–2003. Solid lines connect transect observations while dashed lines are estimated
LAI trends obtained from regressions shown in Fig. 13. Gray boxes approximate monsoonal seasons. Bars at bottom of plot are precipitation observations (m)
aggregated over 3 month intervals.
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The relationship between LAI and emissivity, on the other
hand, suggests a stronger correlation exists for the sparse
canopies at Jornada. Explained variance was good to excellent
(0.81–0.99) for the three sites with significant discrimination
between vegetation-emissivity slope relationships at the
Fig. 13. LAI vs. B11 emissivity (top) and LAI vs. NDVI (bottom) for the Grass,
Transition, and Mesquite transect sites. Plotted as solid symbols are averaged
LAI values with their corresponding remote sensing observations for five
different days: May 2001, May 2002, October 2002, April 2003, October 2003.
Plotted as open symbols are values observed September 2001, made distinctive
because of surface wet conditions. Regression lines (see Table 7) exclude this
anomalous day and support good prediction of LAI from Band 11 emissivities
but not from NDVI.
Mesquite site and the Transition and Grass sites (58.02 LAI/
emissivity vs. 22.41 and 21.38). This discrimination is possibly
related to spatial clumping of vegetation. At the Mesquite site,
shrubs are strongly clumped with large bare soil expanses
between dunes. At the Transition and Grass sites the vegetation
is more uniformly distributed. A consequence of this clumping
is that increases of LAI at the Mesquite site obscure
significantly less soil than do increases at the other two sites.
NDVI appears insensitive to clumping because the bulk of the
canopies are non-green.

6. Emissivity–NDVI relationship

An issue not discussed so far is the relationship between
emissivity and vegetation indices such as NDVI over arid
landscapes. Some suggest a meaningful relationship between
them exists (e.g., Van de Griend and Owe, 1993; Valor and
Caselles, 1996; Bolle et al., 2006), meaning that difficult-to-
obtain emissivity data could be replaced with much more
available NDVI data. This substitution would be especially
valuable because VNIR data also typically have greater spatial
resolutions than possible with TIR data. The basis for the
relationship is that surface emissivities are low over bare soils
and high over vegetation canopies. Soil, when dry, often
exhibits low emissivities (0.9 or less), while vegetation canopies
are efficient scatterers and effectively blackbodies. Hence, as
long as vegetation canopies are also photosynthetically active,
vegetation indices should be able to track emissivity changes
Table 7
LAI regression statistics for Jornada sites with respect to ASTER band 11
emissivities (left) and ASTER NDVI (right)

Site LAI vs. Emissivity LAI vs. NDVI

Slope R2 Standard error Slope R2 Standard error

Grass 21.38 0.99 1.01 11.01 0.52 4.73
Transition 22.41 0.81 5.22 13.70 0.81 3.19
Mesquite 58.02 0.86 11.53 14.46 0.50 6.46



Fig. 14. ASTER Band 11 Emissivity vs. NDVI for mixed land cover in Las Cruces, NM. Each panel displays the relationship between emissivity in thermal band 11
(8.5–8.8 μm) and NDVI. Land cover types include bare soils, agricultural plots, water bodies, and urban land features. The solid line indicates an empirical broadband
emissivity vs. NDVI relation (Van de Griend and Owe, 1993).
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indirectly. Van de Griend and Owe (1993), for example,
proposed a logarithmic formula relating broadband emissivity
to ground-based NDVI observations based on calibrations over
sites in Botswana:

ϵ ¼ 1:0094þ 0:047ln NDVIð Þ ð9Þ

Van de Griend and Owe (1993) suggest scale independence
for the ϵ-NDVI relationship and demonstrate its use at satellite
remote sensing scales. For longer wavelengths in the TIR
window, 10.5–12.5 μm, Valor and Caselles (1996) show that by
considering vegetation structure, modification of Eq. (9) allows
its applicability to regions outside of Botswana. The question
remains, however, how well models such as Eq. (9) could
predict emissivities for land covered by sparse, dormant
vegetation.

Using ASTER TIR and VNIR data from 15 different
overpasses during 2001–2003 at Jornada (Fig. 14), the question
can be partly answered. For this semi-arid landscape,
dependence of ASTER Band 11 (8.475–8.825 μm) emissivity
upon NDVI is in most instances questionable. With possible
exceptions for scenes acquired after 15 May 2002, Band 11
emissivities are poorly correlated to NDVI, and there is a non-
unique relationship for NDVI values between 0.1 and 0.2. For
NDVI values less than 0.2, the slope of the scatter plots is
essentially vertical, meaning there is no meaningful relationship
between NDVI and spectral emissivities. For most dates
displayed in Fig. 14, the maximum emissivity was nearly
reached by NDVI ∼0.2. The black curve (Eq. (9)), even if
translated vertically, did not accurately represent observations,
with emissivity discrepancies sometimes exceeding 3%.

Performing these analyses for broadband emissivities,
instead of narrow band ones, likely would not substantively
change these results (Gieske et al., 2004). Using a wider spectral
interval would reduce the large emissivity variability seen at
low NDVI while maintaining the flat response for higher NDVI.
This lower variability may explain some of the success reported
by Momeni and Saradjian (2007), who evaluated emissivities at
10.5–11.5 μm wavelengths at 1 km spatial resolution. In
contrast, Jornada results show no reliable relationship between
emissivity and NDVI exists at 90-m scales. While there could
be ways to infer emissivities, using NDVI improved with
geometrical parameters (Jiménez-Muñoz et al., 2006), the
likelihood of its success in Jornada-like environments is poor
because emissivity variability is not well-correlated to plant
greenness.

7. Discussion

Retrieval and analysis of ASTER TIR data over southern
New Mexico rangeland shows strong, consistent, and coherent
regions of decreasing band 11 emissivities over the three-year
period, indicating that land cover change for this environment
can be monitored from space. ASTER thermal infrared
observations over the Jornada Experimental Range and the
adjacent New Mexico State University Ranch have revealed
patches of land, ∼5 km×10 km, where emissivities at 8.6 μm
decreased on the order of 3% year−1, with early 2001 NEM-
based emissivities of ∼0.93 decreasing to ∼0.87 by late 2003.

We interpret these patches as areas of decreased vegetation
densities where sparsely vegetated land were further degraded,
exposing greater amounts of bare soil over a three year period.
What is notable for the emissivity data is not the short term,
seasonal changes in vegetation – these might be observed in a
better way using VI data – but rather the inter-annual changes
regardless of seasonality. The physical reason for this difference
is explained by the dynamics of rangeland vegetation and the
fact that VI and emissivity observations respond to different
biochemical and structural properties of vegetation. VI responds
to plant chlorophyll densities, while emissivity responds to
plant canopy geometry and patterns between plant canopies.
This difference in response was described in Section 6. Since VI
changes are seasonal according to plant growth cycles, their
variability within a year is just as large as between years, which
means that it can be difficult to distinguish long-term change
from short-term changes. This difficulty has been noted by
others (e.g., Li et al., 2005).

Emissivity changes, on the other hand, are less likely to show
such seasonal variability over persistent vegetation because the
multi-scattering effects result from plant matter regardless of
chlorophyll content. At time scales greater than a year, plant
distributional patterns do change, and in these cases
corresponding emissivities changes can be detected. Hence,
emissivity variabilities within a year (absent surface wetting
events) are small, while variabilities between years could be
large. To illustrate how the land cover change could be
estimated, the regression results from comparing LAI transect
data to band 11 emissivities (Table 7) were applied to the entire
collection of 27 ASTER scenes and plotted as dashed gray lines
in Fig. 12. The tentative trends (i.e., regression results were
based on too few observations to warrant greater certainty)
show how LAI values at the Mesquite site may have decreased
from ∼2.0 to 1.3 between 2001 and 2003. For the Transition
and Grass sites, the decrease appears to be from 1.5 to 0.8.

Alternative interpretations of the Jornada emissivity patterns
were also considered, such as the possibility of data collection
and processing artifacts. These included TIR calibration errors,
detector degradation, and inaccurate atmospheric corrections,
none of which could be reconciled with all observations. TIR
calibration and detector problems were unlikely because the
ASTER gains were episodically monitored and updated to
reflect correct gains and offsets. Poor atmospheric corrections,
though certainly a concern, were demonstrated to potentially
cause emissivity errors no greater than 1.6%. Furthermore, the
correction errors from radiosonde profiles would not cause
systematic trends, nor would such errors induce the discrete and
the well-delineated patches evident in Fig. 6.

Another interpretation is that the emissivity changes were
due to changes in soil emissivity. These could be induced by
various factors such as change in surface organic matter, surface
texture, and surface moisture. Soil emissivities in particular
have some dependency upon surface grain size (e.g., Salisbury
and Eastes, 1985). It is plausible – though in this instance
unverifiable – that the observed emissivity changes were related
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to grazing activity which may have disturbed the surface soil
texture. Soil emissivity changes can also be seen with changing
surface moisture, but in these cases the changes occur over
short time spans, such as observed for the September 17, 2002
overpass.

Considering that these alternatives were either unlikely or
conjectural, the more probable explanation for the three-year
emissivity patterns, whether decreasing or increasing, is due to
change in vegetation canopy densities. For sparsely vegetated
terrain, the interaction between high-emissivity vegetation and
low-emissivity soils explains in a physically meaningful way
the spatial and temporal distribution of observed emissivity
patches. As vegetation densities increase, low emissivity
surfaces are increasingly masked by higher emissivity surfaces.
There is also evidence from ground transect data that the
temporal emissivity decrease is associated with LAI decreases
at three peripheral sites (Fig. 12 and Table 7). With two
exceptions, canopy LAI values at the Grass, Transition, and
Mesquite sites dropped from ∼1.4 to ∼0.6, a change of more
than 50%. The environmental causes for the vegetation density
changes are unknown and apparently are not linked to short
term precipitation patterns (Fig. 12).

8. Conclusions

Detection of land cover change is an important role for
remote sensing whereby long-term observations can be used to
monitor spatial and temporal seasonal to multi-year patterns in
vegetation cover. The usual approach to this task is to construct
VI maps, derived from normalized red and near infrared data.
Generally these maps have good quality and are extremely
valuable for tracking seasonal vegetation changes. Neverthe-
less, VI techniques distinguish non-green vegetation from
background soils with difficulty, which means that signals from
long term changes can be overwhelmed by seasonal effects.
Such circumstances commonly arise for both cultivated and
uncultivated lands.

In this study we have shown a complementary approach that
may improve abilities to discriminate vegetation cover
regardless of plant color. Using thermal infrared observations
from a one-of-a-kind remote sensing instrument, ASTER,
seasonal land cover changes can be detected by using spectral
emissivities. Unlike VI data, TIR emissivity data respond to
changes in vegetation canopy densities and to changes in
surface soil properties. Provided that the emissivity for soil is
significantly different from vegetation, emissivity changes over
time can be detected. When viewed at multi-year time scales,
long-term changes in land cover, not otherwise recognized, can
be mapped spatially at 100-m scales.

Analysis of 27 ASTER scenes over the Jornada Experimen-
tal Range between 2001–2003 revealed spatially coherent land
cover patterns with decreasing band 11 emissivities. At these
locales, emissivities declined at the rate of ∼3% year−1 with
high confidence (R2 values up to 0.82). The identification of
these regions, corroborated by 1 km MODIS TIR data, supports
ground-based LAI observations where cover decreased from
over 1.0 to ∼0.7. Comparable NDVI observations showed
similar decreases at all sites, but the linear trends were
indistinguishable and statistically insignificant.

These results highlight the importance of multispectral
thermal infrared data that includes observations at wavelengths
within 8–9.5 μm. The value of TIR data extends beyond land
surface temperature retrieval to include the information rich
portion of the TIR window. Commonly, TIR detectors sample
TIR data at wavelengths between 10–13.5 μm for split window
analyses. For land surface applications, variability of surface
emissivities at these wavelengths is typically small and difficult
to use for change assessment in the manner described in this
study. A TIR remote sensing strategy that is better for both
temperature and emissivity estimation is to include observations
within the 8–9.5 μm interval, where emissivity variations due to
soils and vegetation are frequently large. These data, in
combination with longer wavelength TIR data, will provide
valuable land cover information unavailable using other remote
sensing bands. Future work will expand the emissivity change
assessment to more sites throughout the U.S. Southwest.
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